流体解析とは
コンピュータを使用して様々な流体の挙動・状態を数値的に解析する技術を、流体解析(CFD: Computational Fluid Dynamics)と呼んでいます。
空気や水などをはじめとする気体・液体の流れの様子や相変化を捉えたり、またその流れが物体にどのように影響を与えるかを可視化して事象の理解が容易になります。また、状態量(流速・温度・圧力等)を数値出力することで得られる定量的なデータは、開発・設計現場において設計方針の決定や、後工程での手戻り削減等に活用されています。
※正確には、CFDは流体解析を構成する一つの技術とも言えますが、ここでは流体解析=CFDとして扱っています。
流体解析の製品一覧
・Aspherix
オープンソースCFDEM®プロジェクトの成果を実解析に活かすため開発されたGUIと高度な粒子解析ソルバです。
・ELEMENTS
米国Streamline Solutions社製くるまの空力シミュレーションソフトウェアで、多くの可能性を秘めたオープンソースソルバ対応のアプリケーションです。
・HELYX
英ENGYS社が独自に機能強化したOpenFOAM®ライブラリであるHELYX-CoreとHELYX-Core用に設計されたグラフィカルユーザーインターフェース(GUI)で
あるHELYX-GUIで構成されており、LinuxとWindowsの両方の環境で動作可能です。
また、定常流のトポロジーと形状最適化のためのAdjoint法ソルバ(HELYX-Adjoint)、定常/非定常の非圧縮性流れのための完全陰解法連成計算ソルバ
(HELYX-Coupled)海洋工学用の先進のCFDツール群(HELYX-Marine)といったオプションパッケージが用意されています。
・OpenFOAM
C++言語で開発された汎用流体解析ソフトウエアです。
物理モデルのライブラリはソースコードとして提供され、ユーザーは必要に応じて独自のモデルをライブラリに追加することができます。
オープンソースとして無償公開されておりカスタマイズ性に優れる点から、研究開発部門、解析エンジニアの方が利用が増加し続けています。
・PyroSim
米国標準局 (NIST)で開発された火災シミュレーションソフトウェアFire Dynamics Simulator「FDS」を分かりやすく、正確に操作するためのソフトウェアで
す。
FDSモデルの設定をグラフィカルに行うことが出来る他、シミュレーション結果を視覚的に確認できるSmokeviewが統合されています。
建物内の火災の進み方、煙の拡散の様子をはじめ、防火設備の検証(消火設備や防火壁の効果)をシミュレーションするなど、火災に関する研究や新しい防
火技術の開発に利用されています。
・Simcenter FLOEFD
主要なCAD(CATIA V5、Creo、NX、Solid Edge)にアドオンの熱流体解析ソフトウェアであり、バルブやレギュレーター、油圧・空圧部品、熱交換器、自動
車部品、電子機器など、設計の最適化や性能解析が極めて重要な多くの産業や用途で広く利用されています。使いやすさと豊富な機能で多くの設計者の方に
ご利用いただいています。
・SOLIDWORKS Flow Simulation
SOLIDWORKSアドオンで設計しながらシームレスに流体解析が実行できるデザインCAEツールです。
そのため設計段階においてCAE活用がしやすく、製品開発におけるTAT短縮、手戻り削減などに貢献することが期待されます。
流体解析の目的とメリット
流体解析の一番のメリットとして、実機測定を行わずに、さまざまな条件下での流体の挙動・状態を把握できることが挙げられます。これにより、設計段階での課題の特定や、最適化検討が迅速に行え、製品の開発コストと時間を削減することが可能となるため、様々な産業分野で活用されています。
一例としては、
自動車分野:エアロダイナミクス解析により空気抵抗を減少させるための形状最適化や、エンジン冷却の効率向上
エンジン内での燃料噴射、車室内の空調・快適性等
航空宇宙分野:飛行機やロケットの翼設計やエンジン内部の流れ解析により飛行性能の向上や燃焼効率の向上等
建築分野:高層ビルやトンネル内の風況、周囲環境を含めた安全性や快適性評価等
土木分野:洪水時の河川氾濫や橋脚への影響の評価、津波などの被害予測や堤防の効果評価等
エネルギー分野:風力タービンや太陽熱集光装置の効率向上、石油やガスの配管流れに関する最適化等
電子機器、半導体デバイス分野:高効率な冷却設計の検討・検証等
更に研究開発の分野でも、新しい流体現象の理解や、詳細な予測評価等、高度な利用まで非常に幅広く流体解析は利用されています。
流体解析の種類
流体解析では、解析対象や評価ポイント、着目点等に応じて様々な種類があり、これらを適切に選択・設定する必要があります。
定常/非定常解析
定常解析
定常解析は時間経過による変化がない(無視できる)状態を求める解析になります。
ある系が一定の状態に達したと仮定した解析のため、時間的な概念はなく、定常解に至るまでの途中経過には物理的意味を持たないことが一般的です。
非定常解析
非定常解析は、時間経過と共に変化する系や場の状態を求める解析になります。
短い時間幅に区切って少しずつ時間を進めながら順次、解を求める演算を繰り返します。
このため、途中経過も含めて解析でき、予め規定した時間内における変化の様子を知ることができます。
|
圧縮性/非圧縮性流体解析
圧縮性流体解析
流体の密度が圧力や温度の変化によって変わることを考慮する解析手法であり、主に気体の流れを解析する際に用いられます。一例として、航空機の
エンジン内の空気の流れや、超音速で飛行する物体周りの流れなどが挙げられます。
圧縮性流体解析では、
➀圧力や温度の変化に伴う密度の変化を考慮
➁エネルギー方程式による流体のエネルギー変化も含めた解析となる
➂流速が音速に近い場合や超える場合、衝撃波などの現象も考慮
非圧縮性流体解析
非圧縮性流体解析は、流体の密度が一定であるという前提のもと行う解析手法であり、主に液体の流れや、低速で流れる気体の解析に用いられます。
例えば、配管内の水の流れや、風速が低い空気の流れなどが挙げられます。
非圧縮性流体解析では、
➀流体は密度一定として扱われます
➁圧縮性流体解析に比べて、方程式が簡略化されるため、計算負荷が小さくなります。
③低速流れ(マッハ数※ 0.3以下)の場合に適用されます。
※マッハ数とは、流体の流れの速さと音速の比を表す無次元量のこと。
自然対流/強制対流解析
自然対流解析
温度差によって温められた流体が上昇する浮力を主要な駆動力とした自然に発生する流体の流れを解析する手法です。
机上に置いたスマートフォンや、ストーブの周りで空気が自然に循環する現象などの解析等が身近な例になります。
強制対流解析
強制対流解析は、外力(例えばファンやポンプ)によって、流体を強制的に動かす流れを解析する手法です。
これにより、流体の移動が促進され、効率的に熱が移動します。
ファン搭載型の電子機器や、走行中の自動車のラジエター等の解析が身近な例になります。
|
|
伝熱/熱伝導・対流・熱ふく射
熱エネルギーが空間のある地点から別の地点に移動することを伝熱(heat transfer)と呼び、3つの形態があります。
熱伝導(thermal conduction):物体内で温度の高い部分から低い部分へ熱が移動する現象のことで、物体を構成する原子や分子の運動エネルギーが隣接する原子
や分子に伝わること、自由電子の移動によって起こります。
対流(convection):流体(液体や気体)が温度差や密度差によって移動し、その過程で熱が伝わる現象のこと。
熱放射・熱ふく射:高温の物体から電磁波の形で熱が放出され、他の物体に吸収される現象のことで、太陽からの光が地球を温めるのも熱ふく射による効果
です。
また、高度の高い環境では、空気の密度が低下、気圧の低下等により、対流による伝熱が減少し、相対的に熱ふく射による伝熱割合が大きくなります。
化学反応/燃焼解析
分子レベルでの化学反応を考慮した解析が可能です。
例えばプロパン(C3H8)が空気中の酸素(O2)と反応し、燃焼して一酸化炭素(CO2)と水(H2O)が発生するといったような反応を
解析上で扱うことが可能で、反応だけではなく、周囲の流れによる移流・拡散についても解析を行うことが出来ます。
また、燃焼に関連して、火災解析(FDS※:Fire Dynamics Simulator)もあります。
弊社では、FDSのGUIとしてお使いいただける、PyroSimの取扱いもしています。
※Fire Dynamics Simulator (FDS)は、米国国立標準技術研究所(NIST)が開発した火災シミュレーションソフトウェアです。
FDSはCFDを利用して、火災時の煙、温度、一酸化炭素などの挙動を予測することができます。
混相流解析
物質は気体、液体、固体の3つの相に分類できます。
1つの相だけの流れを単相流、複数の相が混在する流れを混相流といいます。
特に気液二相流は私たちの周りに多く見られる身近な現象であり、様々な研究が行われています。
スロッシングのような自由表面の解析や沸騰・蒸発・凝縮といった相変化する解析などがあります。
回転機器解析
回転機器とは、動力を利用して回転する機械であり、モーター、ポンプ、コンプレッサー、タービンなどがその代表的な例です。これらの機器の解析では、ポンプ
やタービンの効率評価、ファンを用いた冷却システム内の流れや熱伝達の解析、さらに流体内で発生するキャビテーション現象(気泡の生成と崩壊)の検討などが
含まれます。
DEM(離散要素法)解析
粒子モデル : 解析対象を自由に運動できる球形や多角形・これら要素の集合体としてモデル化します。
各要素の運動を逐次追跡し、要素間の接触や滑動、衝突等を考慮することが出来ます。
運動方程式 : 各粒子の運動は、質量や慣性モーメントを考慮した運動方程式により表されます。
接触力や外力(重力など)を加味して、粒子の位置や速度を計算します。
接触力モデル: 粒子間の接触力は、法線方向と接線方向に分解され、ばねとダッシュポットで模擬されます。
これにより、粒子間の衝突や摩擦を考慮してます。
また、CFDとDEMを組合せたCFD-DEM連成解析では、粒子と流体の相互作用を含めた解析を行うことが出来ます。
CFD-DEM連成解析の応用分野としては、
化学分野: 反応器内の粒子と流体の挙動解析。
土木分野: 土砂流や粉塵の拡散シミュレーション。
製造分野: 粉体材料の混合や輸送プロセスの最適化
等が挙げられますが、近年では更に様々な工業分野での利用が進んできています。
流体音響解析
音とは圧力波が伝播する現象ですが、流体音響解析における手法は主に音源推定に関する手法と、音の伝播に関する手法の2つがあります。
音源推定に関する手法は主に次の二つがあります。
- 定常乱流解析による乱流量から音源を推定する手法
- 非定常乱流解析による圧力/速度変化率と乱流量から音源を推定する手法
(推定とは異なりますが、音源として圧力振動/物理的振動を仮定する手法もあります。)
音の伝播に関する手法は主に次の3つがあります。
- 固定観測点に対する面/体積音源からの遅延波を考慮した積分手法
- 圧力の波動方程式を解く手法
- 圧縮性流体解析により直接的に圧力波を解析する手法
流体音響解析では、計算負荷の軽い音源推定だけを行う場合や、音源推定と音の伝播を組み合わせて解く場合など、様々な手法が用いられます。
流体-構造連成解析
最近では、流体の動きと構造物の変形が相互に影響し合う現象を評価・検証するために流体-構造連成解析(FSI: Fluid-Structure Interaction)のニーズも
多くなっています。
FSI解析には主に以下の2つの方法があります。
片方向(1way)連成解析:流体解析の結果を構造解析側の入力条件(荷重条件等)とする、文字通り1方向での連成解析となります。
双方向(2way)連成解析:流体と構造の相互作用を双方向で考慮します。
流体解析の結果を構造解析側の入力条件(荷重条件等)として構造解析を行い、構造解析の結果(変位等)を流体解析に
フィードバックし、モデル・メッシュ等の変更後に流体解析を実行するというサイクルを繰り返し実行するような連成解析
となります。
流体解析の手順
流体解析の手順は、
前工程 :①形状、計算領域の定義 ➁メッシュ作成 ③条件設定
ソルバー処理 :➃計算実行
後処理 :➄ポスト処理
となります。
流体解析事例
・Aspherix事例
・ELEMENTS事例
・HELYX事例
-
HELYX
GIB移動境界とVOFを使用した6DOF構造物の落下解析
- HELYX
詳細を見る -
HELYX
窓からの日射を加味した航空機キャビン内のHVAC解析
- HELYX
詳細を見る -
HELYX
F1カーのコーナリング時のタンク内ガソリン移動をシミュレーション
- HELYX
詳細を見る -
HELYX
GIB移動メッシュによるバルブ全閉の解析
- HELYX
詳細を見る -
HELYX
GIB移動境界によるボールバルブ開閉解析
- HELYX
詳細を見る -
HELYX
GIB移動境界とVOFを使用したバルブスイッチとスロッシング
- HELYX
詳細を見る -
HELYX
GIB移動流入境界を使用したVOF解析
- HELYX
詳細を見る -
HELYX
VOFによるポンプ吸込口空気巻き込み解析
- HELYX
詳細を見る -
HELYX
VOFによる越流解析
- HELYX
詳細を見る -
HELYX
スライドメッシュによる回転スクリューの解析
- HELYX
詳細を見る -
HELYX
無風の室内での軽い咳の影響
- HELYX
詳細を見る -
HELYX
多岐管の流量最適化Adjointトポロジ最適化(出口流量均一化)
- HELYX
詳細を見る -
HELYX
LESによるバックステップ流れの乱流解析
- HELYX
詳細を見る
・OpenFOAM事例
・PyroSim事例
・Simcenter FLOEFD
・SOLIDWORKS Flow Simulation